avitag Blog cell proliferation reagent wst 1 novex gel

Cell Counting Kit-8 (CCK-8)

Cell Counting Kit-8 (CCK-8) permits helpful tests utilizing WST-8 (2-(2-methoxy-4-nitrophenyl)- 3-(4-nitrophenyl)- 5-(2,4-disulfophenyl)- 2H-tetrazolium, monosodium salt), which delivers a water-dissolvable formazan color upon bioreduction within the sight of an electron transporter, 1-Methoxy PMS. CCK-8 arrangement is added straightforwardly to the cells, no pre-blending of parts is required. WST-8 is bioreduced by cell dehydrogenases to an orange formazan item that is solvent in tissue culture medium.

How much formazan created is straightforwardly corresponding to the quantity of living cells. Since the CCK-8 arrangement is entirely steady and it has little cytotoxicity, a more extended brooding, like 24 to 48 hours, is conceivable.
Cell Counting Kit-8 permits touchy colorimetric examines for the assurance of the quantity of reasonable cells in the multiplication and cytotoxicity tests. The recognition responsiveness is higher than some other tetrazolium salts like MTT, XTT or MTS.

Cell Counting Kit 8, ccK-8 for short, is a profoundly delicate and non-radioactive colorimetric identification strategy used to decide the quantity of living cells in Cell multiplication or harmfulness tests.

Cck-8 is an update result of MTT. Cck-8 arrangement can be straightforwardly added to cell tests without prepreparation of different parts, fast recognition and extremely low poisonousness. Cck-8 depends on the water-dissolvable tetrazole salt WST-8.

This is the secret: WST-8, within the sight of an electron-coupled reagent, can be decreased by a chemical called dehydrogenase in the mitochondria to create an orange messy color. Nail dark breaks down in tissue media with respect to the quantity of living cells. By colorimetry, the quantity of living cells can be progressively evaluated to recognize cell multiplication or medication poisonousness. This unit is ordinarily used to identify cycle and apoptosis of connected or suspended cells. On account of tissue, the tissue should be processed into a solitary cell state before it tends to be tried.

The TC20 mechanized cell counter includes mammalian cells in a single basic advance utilizing its inventive auto-center innovation and complex cell counting calculation to create exact cell includes in under 30 seconds. Endless supply of an including slide, the TC20 cell counter quickly gives an absolute cell count (no matter what trypan blue staining) and surveys cell practicality by means of trypan blue rejection..

Key Features and Benefits

  • Viable with an expansive scope of cell sizes and types – counts cell lines, essential cells (from tissue or blood), and undifferentiated organisms
  • Creative auto-center innovation – eliminates the variety related with manual centering and prompts exact cell includes in 30 seconds
  • Cell size entryways – client chooses a populace of interest in complex examples, like essential cells, or lets the cell counting calculation accomplish practically everything
  • Cell practicality – investigates cells precisely utilizing multifocal plane examination
  • Simple to file and investigate – accumulates to 100 includes in the installed memory for access any time, or utilize the discretionary TC20 information analyzer programming on your PC to additionally break down sent out cell pictures
  • Getting every one of the information you really want about your cell societies is quick and simple; the TC20 cell counter and expendable counting slides dispense with the requirement for dreary arrangement, cleaning, or upkeep.
  • The TC20 cell counter is straightforward and instinctive to utilize – figure out how to utilize the TC20 mechanized cell counter in the presentation video or step through a virtual examination drive.

Come by Accurate and Reproducible Results

The TC20 robotized cell counter purposes microscopy with auto-center that examines various central planes to distinguish the best plane. Without requiring any client input, the refined cell counting calculation utilizes the picture obtained from the best central plane to distinguish cells and prohibit trash, consequently working out the complete cell count.

Cell Counting Kit-8

HY-K0301 MedChemExpress 120 mL (12000 T) 1135 EUR

Cell Counting Kit-8 (CCK-8)

AR1160 BosterBio 5 mL (for 500 assays, 10μL per well) 131 EUR

Cell Counting Kit-8 (CCK-8)

K1018-1 ApexBio 1x1 ml (100 tests) 73 EUR

Cell Counting Kit-8 (CCK-8)

K1018-30 ApexBio 6x5 ml (3000 tests) 328 EUR

Cell Counting Kit-8 (CCK-8)

K1018-5 ApexBio 1x5 ml (500 tests) 119 EUR

Cell Counting Kit-8 (CCK-8)

B34302 Bimake 5 mL (500 ractions) 130 EUR

Cell Counting Kit-8 (CCK-8)

B34304 Bimake 25 mL (2500 ractions) 315 EUR

CCK-8 Cell Counting Kit

A311-01 Vazyme 500 rxn 179 EUR

CCK-8 Cell Counting Kit

A311-02 Vazyme 1000 rxn 234 EUR

Cell Counting Kit-8 (CCK8) Cell Viability Assay Kit

abx090677-500tests Abbexa 500 tests 394 EUR

Cell Counting Kit (CCK)

20-abx098245 Abbexa
  • 523.00 EUR
  • 411.00 EUR
  • 718.00 EUR
  • 467.00 EUR
  • 10 ml
  • 1 ml
  • 30 ml
  • 5 ml

pAAV-DJ/8 Vector

VPK-420-DJ-8 Cell Biolabs 10 µg 647 EUR

AAV-DJ/8 Helper Free Packaging System

VPK-400-DJ-8 Cell Biolabs 1 kit 972 EUR

AAV-DJ/8 Helper Free Expression System

VPK-410-DJ-8 Cell Biolabs 1 kit 1239 EUR

scAAV-DJ/8 Helper Free Expression System

VPK-430-DJ-8 Cell Biolabs 1 kit 1239 EUR

AAV-DJ/8 Helper Free Promoterless Expression System

VPK-411-DJ-8 Cell Biolabs 1 kit 1239 EUR

AAV-DJ/8 Helper Free Bicistronic Expression System (Puro)

VPK-415-DJ-8 Cell Biolabs 1 kit 1239 EUR

AAV-DJ/8 Helper Free Bicistronic Expression System (Neo)

VPK-416-DJ-8 Cell Biolabs 1 kit 1239 EUR

AAV-DJ/8 Helper Free Bicistronic Expression System (Hygro)

VPK-417-DJ-8 Cell Biolabs 1 kit 1239 EUR

The auto-center prompts profoundly reproducible cell counts with decreased client to-client inconstancy contrasted with a hemocytometer and cell counters with manual concentration. Utilizing auto-center rather than emotional manual centering is particularly significant while surveying cell reasonability on the grounds that an erroneously chosen central plane will prompt wrong outcomes.

lyo NZYSupreme qPCR Probe Master Mix
avitag biotin blocking Blog cell proliferation reagent wst 1 ctgf elisa novex gel Product ros assay tbr2 antibody western blot control

lyo NZYSupreme qPCR Probe Master Mix

Description: Lyo NZYSupreme qPCR Probe Master Mix (2x) is an optimized and highly efficient freeze-dried reaction mixture developed for realtime PCR. This master mix was engineered with a dual hot-start enzyme control mechanism to provide the highest detection sensitivity. In addition, the latest developments in PCR enhancers have been incorporated in the Lyo NZYSupreme qPCR Probe Master Mix, including buffer chemistry and incorporation of highly robust engineered enzymes. This master mix does not contain ROX and it was specifically developed for probe-detection technology, including molecular beacons. For qPCR instruments that require ROX reference dye, please add ROX (Cat. No. MB406) according to the table presented in the section “ROX reference dye”. Lyo NZYSupreme qPCR Probe Master Mix (2x) is provided as a simple-to-use, stabilized 2x reaction mixture that includes all components for quantitative PCR, except sample DNA, primers, probe and water.

Features:
– Eco-friendly room temperature shipment
– Stable at room temperature for 1 month
– Dual hot-start mode
– Ultra-sensitive: detects low-copy number targets
– Batch-to-batch reproducibility
– Intra-batch reproducibility
– Simple and reproducible
– Compatible with multiple real-time platforms

Components:
– Lyo NZYSupreme qPCR Probe Master Mix (2x)
– qPCR master mix reconstitution buffer

Applications:
– Real-time qPCR
– Two-step RT-qPCR
– Developed for probe-detection technology

New Lyo qPCR Probe Master Mix (2x)

Lyo NZYSupreme qPCR Probe Master Mix (2x)

Description: Lyo NZYSupreme qPCR Probe Master Mix (2x) is an optimized and highly efficient freeze-dried reaction mixture developed for realtime PCR. This master mix was engineered with a dual hot-start enzyme control mechanism to provide the highest detection sensitivity. In addition, the latest developments in PCR enhancers have been incorporated in the Lyo NZYSupreme qPCR Probe Master Mix, including buffer chemistry and incorporation of highly robust engineered enzymes. This master mix does not contain ROX and it was specifically developed for probe-detection technology, including molecular beacons. For qPCR instruments that require ROX reference dye, please add ROX (Cat. No. MB406) according to the table presented in the section “ROX reference dye”. Lyo NZYSupreme qPCR Probe Master Mix (2x) is provided as a simple-to-use, stabilized 2x reaction mixture that includes all components for quantitative PCR, except sample DNA, primers, probe and water.

lyo NZYSupreme qPCR Probe Master Mix
lyo NZYSupreme qPCR Probe Master Mix

Features:
– Eco-friendly room temperature shipment
– Stable at room temperature for 1 month
– Dual hot-start mode
– Ultra-sensitive: detects low-copy number targets
– Batch-to-batch reproducibility
– Intra-batch reproducibility
– Simple and reproducible
– Compatible with multiple real-time platforms

Components:
– Lyo NZYSupreme qPCR Probe Master Mix (2x)
– qPCR master mix reconstitution buffer

Entrans 2X qPCR Probe Master Mix

RK21208 40 RXN Ask for price

HotTaq Probe qPCR Mix (ROX)

BT11001 250rxn
EUR 109
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

HotTaq Probe qPCR Mix (Capillary)

BT11003 250rxn
EUR 109
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

HotTaq Probe qPCR Universal Mix

BT11004 250rxn
EUR 123
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

AceQ U+ Probe Master Mix

Q113-02 500 rxn (20 μl/rxn)
EUR 267

AceQ U+ Probe Master Mix

Q113-03 2500 rxn (20 μl/rxn)
EUR 842

SYBR Green qPCR Master Mix

HY-K0501 5 mL (500 rxns)
EUR 263

RT Master Mix for qPCR

HY-K0510 1 mL (100 rxns)
EUR 291

HotTaq Probe qPCR Mix (no ROX)

BT11002 250rxn
EUR 109
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

Fast Probe Master Mix (200 rxn)

31005 2x1ML
EUR 234
Description: Minimum order quantity: 1 unit of 2x1ML

Fast Probe Master Mix (500 rxn)

31005-1 5x1ML
EUR 466
Description: Minimum order quantity: 1 unit of 5x1ML

Fast Probe Master Mix (5000 rxn)

31005-2 50x1ML
EUR 3871
Description: Minimum order quantity: 1 unit of 50x1ML

ChamQ Geno-SNP Probe Master Mix

Q811-02 500 rxn (20 μl/rxn)
EUR 277

ChamQ Geno-SNP Probe Master Mix

Q811-03 2500 rxn (20 μl/rxn)
EUR 923

2x SYBR Green qPCR Master Mix

B21202 5 mL
EUR 224
Description: Our 2x SYBR Green qPCR master mix performs toe to toe in all qPCR assays with the most well known brands on the market but surpases them significantly in cost-efficiency.

2x SYBR Green qPCR Master Mix

B21203 25 mL
EUR 856
Description: Our 2x SYBR Green qPCR master mix performs toe to toe in all qPCR assays with the most well known brands on the market but surpases them significantly in cost-efficiency.

AceQ Universal SYBR qPCR Master Mix

Q511-02 500 rxn (20 μl/rxn)
EUR 221

AceQ Universal SYBR qPCR Master Mix

Q511-03 2500 rxn (20 μl/rxn)
EUR 646

ChamQ Universal SYBR qPCR Master Mix

Q711-02 500 rxn (20 μl/rxn)
EUR 221

ChamQ Universal SYBR qPCR Master Mix

Q711-03 2500 rxn (20 μl/rxn)
EUR 646

Accuris qMax Probe No Rox qPCR Mix

PR2001-N-1000 1 PC
EUR 467.74

AceQ U+ Universal Probe Master Mix V2

Q513-02 500 rxn (20 μl/rxn)
EUR 267

AceQ U+ Universal Probe Master Mix V2

Q513-03 2500 rxn (20 μl/rxn)
EUR 842

SYBR Green qPCR Master Mix (High ROX)

HY-K0521 1 mL (100 rxns)
EUR 113

SYBR Green qPCR Master Mix (Low ROX)

HY-K0522 5 mL (500 rxns )
EUR 257

SYBR Green qPCR Master Mix (No ROX)

HY-K0523 5 mL (500 rxns )
EUR 257

miRNA Universal SYBR® qPCR Master Mix

MQ101-01 125 rxn(20 μl/rxn)
EUR 138

miRNA Universal SYBR® qPCR Master Mix

MQ101-02 500 rxn(20 μl/rxn)
EUR 242

 

 

t.spot covid
avitag biotin blocking cell proliferation reagent wst 1 ctgf elisa novex gel pcr machines Product tbr2 antibody western blot control

t.spot covid

HIGHLIGHTS

  • TSPOT.COVID is an ELISpot interferon gamma-release assay for SARS-CoV-2
  • TSPOT.COVID identifies a T cell response to SARS-CoV-2 spike S1 and N peptides
  • 2–8 weeks post SARS-CoV-2 diagnosis TSPOT.COVID detected 98% of infections
  • In comparison, immunoglobulin G (IgG) serology detected 83% of infections in the same period
  • Cellular immune response activated sooner and lasted longer than antibodies

Abstract

Objective

To evaluate the performance of the T-SPOT.COVID test for identifying SARS-CoV-2-responsive T-cells in participants with SARS-CoV-2 infection.

Methods

The T-SPOT.COVID test uses ELISpot interferon-gamma release assay (IGRA) methodology to measure T cell responses to SARS-CoV-2 spike S1 and nucleocapsid peptides. T-SPOT.COVID and anti-N immunoglobulin (Ig) G serology tests were performed on blood from 186 patients with nucleic acid amplification test (NAAT)-confirmed-SARS-CoV-2 infection and 100 control group participants.

Results

In the 2–8 weeks after NAAT-diagnosed SARS-CoV-2 infection, the T-SPOT.COVID test detected 98.4% (63 of 64) of infected participants, while anti-N IgG serology detected 82.8%. In the first 2 weeks after diagnosis, during adaptive immune response activation, there were less reactive T-SPOT.COVID responses (75.7%, 28 of 37 infected participants) and many less seropositive responses (32.4%). Response numbers tapered after 8 weeks; however, T-SPOT.COVID test continued to detect most participants with confirmed infection (83.6%, 56 of 67) and continued to out-perform serology (52.2%). T-SPOT.COVID response due to cross-reactive T cells was ruled out by demonstrating that, of 44 control group participants with T cells responsive to 4 human common cold coronavirus peptides, only 1 was T-SPOT.COVID reactive.

Conclusion

The T-SPOT.COVID test performed well in detecting SARS-CoV-2-sensitized T-cells over many months

Introduction

Long-term protection from infectious agents, such as the SARS-CoV-2 virus, is mediated by T cells and antibody-mediated immunity of the adaptive immune system (

Sette and Crotty, 2021

). The T-SPOT.COVID test was developed to identify the presence of SARS-CoV-2-responsive T cells.

T cells contribute to the understanding of SARS-CoV-2 infections in many ways. T cells can identify past SARS-CoV-2 infections at a time when PCR tests would be negative and antibodies levels may be waning (

Dan et al., 2021

;

Gudbjartsson et al., 2020

;

Poland et al., 2020

). T cells can provide immune memory lasting for months (

Dan et al., 2021

) and perhaps years, as suggested by the discovery of T cells to the SARS-CoV-1 coronavirus 17 years after infection (

Le Bert et al., 2020

). T cells may act independently of antibodies to control a SARS-CoV-2 infection, as shown by the recovery of COVID-19 patients who lack detectable antibodies but have SARS-CoV-2-responsive T cells (

Gallais et al., 2021

;

Sekine et al., 2020

). T cells also show reactivity to numerous SARS-CoV-2 epitopes, so have the potential to protect against many SARS-CoV-2 variants (

Grifoni et al., 2020

;

Tarke et al., 2021

). T cell-based assays can probe the longevity of an immune response following a SARS-CoV-2 infection or vaccination (

Goletti et al., 2021

;

Liu et al., 2021

;

Reynolds et al., 2021

). These various roles suggest that a T cell assay can be a key contributor to SARS-CoV-2 investigations.

The T-SPOT.COVID test, an enzyme-linked immunospot (ELISpot) assay, identifies T cells in peripheral blood that release interferon-gamma (IFN-γ) in response to stimulation with SARS-CoV-2 peptides. The T-SPOT.COVID test builds on the T-SPOT platform (Oxford Immunotec) used worldwide for tuberculosis and cytomegalovirus testing and the research version, the T-SPOT Discovery SARS-CoV-2 test (

Liu et al., 2021

;

t.spot covid
t.spot covid
Wyllie et al., 2021

). The T-SPOT.COVID ELISpot methodology is performed in many laboratories and offers a standardized comparison of T cell immunity among participants. In addition, ELISpot assays normalize the number of peripheral blood mononuclear cells (PBMCs), thus maintaining test effectiveness in participants with lymphopenia, a commonly reported condition in many COVID-19 patients (

Altmann and Boyton, 2020

) and immunosuppressed people.

The objective of this study was to evaluate the ability of the T-SPOT.COVID test to detect T cell responses in participants with or without a history of SARS-CoV-2 infection and to compare the T-SPOT.COVID test results with anti-N immunoglobulin (Ig)G serology results in the first several months after infection.

Materials and Methods

2.1 Participant recruitment

Participants for this single-center, cross-sectional study were recruited from patients who had attended the outpatient Primacare medical center in Fall River, Massachusetts, USA, between November 30, 2020, and March 24, 2021, a time of high demand for COVID-19 testing. Among other healthcare services, Primacare provided COVID-19 testing to anyone wanting or required to be tested. The New England Center for Clinical Research (NECCR) invited participants to join the study if they had received a positive SARS-CoV-2 nucleic acid amplification test (NAAT) at Primacare or if NECCR deemed them to be at low risk of SARS-CoV-2 infection. As this study was run independently from the participants’ healthcare providers, clinical data such as chest x-rays and hospitalizations records were not obtained. Informed consent and study approval were obtained from the Advarra institutional review board by NECCR at Primacare.
Confirmed-infection group: A NAAT, which detects the presence of the SARS-CoV-2 virus, was used to identify people infected with SARS-CoV-2 at the time of testing (

Rai et al., 2021

). Participants in the confirmed-infection group were recruited from asymptomatic and symptomatic patients who had had a positive SARS-CoV-2 NAAT result within the past 9 months. The date of the first positive NAAT result was considered the date of diagnosis of SARS-CoV-2 infection. Blood was drawn for Abbott SARS-CoV-2 chemiluminescent microparticle immunoassay (CMIA) anti-N IgG serology and T-SPOT.COVID tests between 0 to 249 days after diagnosis.

The analysis of responses was divided into 3 time periods: 0 to 2 weeks after diagnosis (0 to 14 days); 2+ to 8 weeks after diagnosis (15 to 56 days); and 8+ weeks after diagnosis (57+ days).
Control group: Many SARS-CoV-2 studies use frozen pre-pandemic blood for control samples; however, the T-SPOT platform requires fresh blood to ensure consistent results. Therefore fresh blood was obtained from control group participants prospectively recruited from individuals with low risk of prior SARS-CoV-2 infection. Requirements for enrollment included no current or prior signs or symptoms of COVID-19, no known contact with a confirmed SARS-CoV-2-infected individual, no prior history of a positive SARS-CoV-2 NAAT, no SARS-CoV-2 vaccination, and no prior diagnosis with SARS-CoV-1 or Middle Eastern Respiratory Syndrome (MERS). In addition, the BIOHIT HealthCare SARS-CoV-2 lateral flow anti-N IgM/IgG serology test was performed at enrollment, and the 1 person with a positive BIOHIT result was not enrolled. Blood was drawn at enrollment for testing with T-SPOT.COVID and the Abbott CMIA anti-N IgG serology test and anyone with a positive serology result was excluded from the control group.

2.2 T-SPOT.COVID test

The T-SPOT.COVID test includes over 250 SARS-CoV-2 peptides (15-mer peptides overlapping by 11 amino acids) in 2 antigen peptide pools; one pool contains peptides from the spike S1 protein, including the receptor-binding domain, and the other contains peptides from the nucleocapsid protein.
Blood samples for the T-SPOT.COVID test were processed and analyzed according to the manufacturer’s instructions. Briefly, blood samples were drawn into lithium heparin tubes which were shipped overnight to Oxford Immunotec (Abingdon, UK) in temperature-controlled shipping boxes. Next, the T-Cell Xtend reagent (Oxford Immunotec) was added to the samples, and PBMCs were isolated by density gradient centrifugation, washed, counted, and 250 000 cells/well were plated into 4 wells of a 96-well plate.

SARS-CoV-2 (COVID-19) Spike Antibody

3525-01mg 0.1 mg
EUR 436.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Envelope Antibody

3531-002mg 0.02 mg
EUR 171.82
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Envelope Antibody

3531-01mg 0.1 mg
EUR 436.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9099-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9099-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9103-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9103-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) NSP7 Antibody

9155-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.

SARS-CoV-2 (COVID-19) NSP7 Antibody

9155-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.

SARS-CoV-2 (COVID-19) Membrane Antibody

9157-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) Membrane Antibody

9157-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9159-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9159-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9161-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9161-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9163-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9163-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) Membrane Antibody

9165-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) Membrane Antibody

9165-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9167-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9167-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) Envelope Antibody

9169-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Envelope Antibody

9169-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9171-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9171-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9173-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9173-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP4 Antibody

9175-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4).

SARS-CoV-2 (COVID-19) NSP4 Antibody

9175-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4).

SARS-CoV-2 (COVID-19) NSP6 Antibody

9177-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4).

SARS-CoV-2 (COVID-19) NSP6 Antibody

9177-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4).

SARS-CoV-2 (COVID-19) NSP10 Antibody

9179-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3).

SARS-CoV-2 (COVID-19) NSP10 Antibody

9179-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3).

SARS-CoV-2 (COVID-19) ORF6 Antibody

9189-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF6 disrupts cell nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of transport into the nucleus. Thereby it prevents STAT1 nuclear translocation in response to interferon signaling, thus blocking the expression of interferon stimulated genes (ISGs) that display multiple antiviral activities(3).
AIRBORNE ALLERGY SCREEN KIT
avitag biotin blocking cell proliferation reagent wst 1 ctgf elisa novex gel pcr machines Product ros assay tbr2 antibody western blot control

test for allergies airborne screen

Overview

During allergy skin tests, your skin is exposed to suspected allergy-causing substances (allergens) and is then observed for signs of an allergic reaction.

Along with your medical history, allergy tests may be able to confirm whether a particular substance you touch, breathe, or eat is causing symptoms.

 

Allergy skin tests are widely used to help diagnose allergic conditions, including:

  • Hay fever (allergic rhinitis)
  • Allergic asthma
  • Dermatitis (eczema)
  • Food allergies
  • Penicillin allergy
  • Bee venom allergy

Skin tests are generally safe for adults and children of all ages, including infants. In certain circumstances, though, skin tests aren’t recommended. Your doctor may advise against skin testing if you:

  • Have ever had a severe allergic reaction. You may be so sensitive to certain substances that even the tiny amounts used in skin tests could trigger a life-threatening reaction (anaphylaxis).
  • Take medications that could interfere with test results. These include antihistamines, many antidepressants and some heartburn medications. Your doctor may determine that it’s better for you to continue taking these medications than to temporarily discontinue them in preparation for a skin test.
  • Have certain skin conditions. If severe eczema or psoriasis affects large areas of skin on your arms and back — the usual testing sites — there may not be enough clear, uninvolved skin to do an effective test. Other skin conditions, such as dermatographism, can cause unreliable test results.

Blood tests (in vitro immunoglobulin E antibody tests) can be useful for those who shouldn’t or can’t undergo skin tests. Blood tests aren’t used for penicillin allergy.

In general, allergy skin tests are reliable for diagnosing allergies to airborne substances, such as pollen, pet dander and dust mites. Skin testing may help diagnose food allergies. But because food allergies can be complex, you may need additional tests or procedures.

Types of allergens

Allergens are substances that can cause an allergic reaction. There are three primary types of allergens:

  • Inhaled allergens affect the body when they come in contact with the lungs or membranes of the nostrils or throat. Pollen is the most common inhaled allergen.
  • Ingested allergens are present in certain foods, such as peanuts, soy, and seafood.
  • Contact allergens must come in contact with your skin to produce a reaction. An example of a reaction from a contact allergen is the rash and itching caused by poison ivy.

Allergy tests involve exposing you to a very small amount of a particular allergen and recording the reaction.

Insect sting allergy tests 

Why allergy testing is performed

Allergies affect more than 50 million people living in the USA, according to the American College of Allergy, Asthma, and Immunology. Inhaled allergens are by far the most common type. Seasonal allergies and hay fever, which is an allergic response to pollen, affect more than 40 million Americans.

The World Allergy Organization estimates that asthma is responsible for 250,000 deaths annually. These deaths can be avoided with proper allergy care, as asthma is considered an allergic disease process.

How allergy testing is performed

An allergy test may involve either a skin test or a blood test. You may have to go on an elimination diet if your doctor thinks you might have a food allergy.

AIRBORNE ALLERGY SCREEN KIT
AIRBORNE ALLERGY SCREEN KIT

Skin tests

Skin tests are used to identify numerous potential allergens. This includes airborne, food-related, and contact allergens. The three types of skin tests are scratch, intradermal, and patch tests.

Your doctor will typically try a scratch test first. During this test, an allergen is placed in liquid, then that liquid is placed on a section of your skin with a special tool that lightly punctures the allergen into the skin’s surface. You’ll be closely monitored to see how your skin reacts to the foreign substance. If there’s localized redness, swelling, elevation, or itchiness of the skin over the test site, you’re allergic to that specific allergen.

If the scratch test is inconclusive, your doctor may order an intradermal skin test. This test requires injecting a tiny amount of allergen into the dermis layer of your skin. Again, your doctor will monitor your reaction.

Another form of skin test is the patch test (T.R.U.E. TESTTrusted Source). This involves using adhesive patches loaded with suspected allergens and placing these patches on your skin. The patches will remain on your body after you leave your doctor’s office. The patches are then reviewed at 48 hours after application and again at 72 to 96 hours after application.

Blood tests

If there’s a chance you’ll have a severe allergic reaction to a skin test, your doctor may call for a blood test. The blood is tested in a laboratory for the presence of antibodies that fight specific allergens. This test, called ImmunoCAP, is very successful in detecting IgE antibodies to major allergens.

Elimination diet

An elimination diet may help your doctor determine which foods are causing you to have an allergic reaction. It entails removing certain foods from your diet and later adding them back in. Your reactions will help determine which foods cause problems.

 

 

Calci-Clear Rapid

NAT1322 EACH
EUR 386

Cobalt Rapid Run

6CoRR-100 100 ml
EUR 431

Cobalt Rapid Run

6CoRR-25 25 ml
EUR 166

Cobalt Rapid Run

6CoRR-500 500 ml
EUR 1474

Nickel Rapid Run

6NiRR-100 100 ml
EUR 431

Nickel Rapid Run

6NiRR-25 25 ml
EUR 166

Nickel Rapid Run

6NiRR-500 500 ml
EUR 1474

BASU RaPID plasmid

PVT14054 2 ug
EUR 599

Rapid Transformation Kit

156 Kit
EUR 158

Leptospira biflexa Antibody

abx023082-1ml 1 ml
EUR 565

Rapid RCA Assay Kit

VPK-111 30 assays
EUR 537
Description: Traditionally RCA (replication competent adenovirus) is measured in permissive cells by a plaque-forming unit (PFU) assay which takes 10-14 days. Our Rapid RCA Assay Kit uses an immunocytochemistry staining protocol that requires only a two day incubation.

Rapid RCA Assay Kit

VPK-111-5 5 x 30 assays
EUR 2155
Description: Traditionally RCA (replication competent adenovirus) is measured in permissive cells by a plaque-forming unit (PFU) assay which takes 10-14 days. Our Rapid RCA Assay Kit uses an immunocytochemistry staining protocol that requires only a two day incubation.

NDV rapid test kit

RG15-03 1 box
EUR 139.05
Description: Please check the datasheet of NDV rapid test kit before using the test.

IBD rapid test strip

RG15-04 10 boxes
EUR 148
Description: Please check the datasheet of IBD rapid test strip before using the test.

Rabies rapid test strip

RG18-01 10 boxes
EUR 151.92
Description: Please check the datasheet of Rabies rapid test strip before using the test.

Rapid Antibody Purification Kit

AKR-160 10 assays
EUR 519
Description: Cell Biolabs? Rapid Antibody Purification kit is designed for rapid, single-step purification of high-quality IgG from ascites, serum and tissue culture media or hybridoma supernatants.

Melamine Rapid Test Kit

abx092011-50tests 50 tests
EUR 370

Nickel NTA Rapid Run

6RR-NTANI-100 100 ml
EUR 815

Nickel NTA Rapid Run

6RR-NTANI-25 25 ml
EUR 262

Nickel NTA Rapid Run

6RR-NTANI-500 500 ml
EUR 3711

Metal Free Rapid Run

6RR-QH-100 100 ml
EUR 431

Metal Free Rapid Run

6RR-QH-25 25 ml
EUR 166

Metal Free Rapid Run

6RR-QH-500 500 ml
EUR 755

T4 DNA Ligase (Rapid)

N103-01 600,000 U
EUR 563

Leptospira interrogans PCR kit

PCR-VH088-48D 50T
EUR 453

Leptospira interrogans PCR kit

PCR-VH088-96D 100T
EUR 572

Leptospira spp. PCR kit

PCR-VH089-48D 50T
EUR 453

Leptospira spp. PCR kit

PCR-VH089-96D 100T
EUR 572

Recombinant Leptospira interrogans [His]

DAGA-3029 1mg
EUR 2665

FD Rapid MultiStain™ Kit

PK501 kit
EUR 601

FD Rapid TimmStain™ Kit

PK701 kit
EUR 722

Rapid Plant RNA Isolation Kit

PT4191 50Preps
EUR 79.69

Rapid Fungal RNA Extraction Kit

FT71416 50Preps
EUR 79.69

Canine T4 Rapid ELISA Kit

DEIA1763 32T
EUR 832

Sterling Rapid Silver Stain Kit

NAT1106 1KIT
EUR 221

Rapid Viral RNA Extraction Kit

VT4184 50Preps
EUR 153.53

Rapid Leishmania Ab Test Kit

RB2104 1 box
EUR 127
Description: Please check the datasheet of Rapid Leishmania Ab Test Kit before using the test.

Rapid PED Ag Test Kit

RG14-01 1 box
EUR 159.9
Description: Please check the datasheet of Rapid PED Ag Test Kit before using the test.