lyo NZYSupreme qPCR Probe Master Mix
avitag biotin blocking Blog cell proliferation reagent wst 1 ctgf elisa novex gel Product ros assay tbr2 antibody western blot control

lyo NZYSupreme qPCR Probe Master Mix

Description: Lyo NZYSupreme qPCR Probe Master Mix (2x) is an optimized and highly efficient freeze-dried reaction mixture developed for realtime PCR. This master mix was engineered with a dual hot-start enzyme control mechanism to provide the highest detection sensitivity. In addition, the latest developments in PCR enhancers have been incorporated in the Lyo NZYSupreme qPCR Probe Master Mix, including buffer chemistry and incorporation of highly robust engineered enzymes. This master mix does not contain ROX and it was specifically developed for probe-detection technology, including molecular beacons. For qPCR instruments that require ROX reference dye, please add ROX (Cat. No. MB406) according to the table presented in the section “ROX reference dye”. Lyo NZYSupreme qPCR Probe Master Mix (2x) is provided as a simple-to-use, stabilized 2x reaction mixture that includes all components for quantitative PCR, except sample DNA, primers, probe and water.

Features:
– Eco-friendly room temperature shipment
– Stable at room temperature for 1 month
– Dual hot-start mode
– Ultra-sensitive: detects low-copy number targets
– Batch-to-batch reproducibility
– Intra-batch reproducibility
– Simple and reproducible
– Compatible with multiple real-time platforms

Components:
– Lyo NZYSupreme qPCR Probe Master Mix (2x)
– qPCR master mix reconstitution buffer

Applications:
– Real-time qPCR
– Two-step RT-qPCR
– Developed for probe-detection technology

New Lyo qPCR Probe Master Mix (2x)

Lyo NZYSupreme qPCR Probe Master Mix (2x)

Description: Lyo NZYSupreme qPCR Probe Master Mix (2x) is an optimized and highly efficient freeze-dried reaction mixture developed for realtime PCR. This master mix was engineered with a dual hot-start enzyme control mechanism to provide the highest detection sensitivity. In addition, the latest developments in PCR enhancers have been incorporated in the Lyo NZYSupreme qPCR Probe Master Mix, including buffer chemistry and incorporation of highly robust engineered enzymes. This master mix does not contain ROX and it was specifically developed for probe-detection technology, including molecular beacons. For qPCR instruments that require ROX reference dye, please add ROX (Cat. No. MB406) according to the table presented in the section “ROX reference dye”. Lyo NZYSupreme qPCR Probe Master Mix (2x) is provided as a simple-to-use, stabilized 2x reaction mixture that includes all components for quantitative PCR, except sample DNA, primers, probe and water.

lyo NZYSupreme qPCR Probe Master Mix
lyo NZYSupreme qPCR Probe Master Mix

Features:
– Eco-friendly room temperature shipment
– Stable at room temperature for 1 month
– Dual hot-start mode
– Ultra-sensitive: detects low-copy number targets
– Batch-to-batch reproducibility
– Intra-batch reproducibility
– Simple and reproducible
– Compatible with multiple real-time platforms

Components:
– Lyo NZYSupreme qPCR Probe Master Mix (2x)
– qPCR master mix reconstitution buffer

Entrans 2X qPCR Probe Master Mix

RK21208 40 RXN Ask for price

HotTaq Probe qPCR Mix (ROX)

BT11001 250rxn
EUR 109
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

HotTaq Probe qPCR Mix (Capillary)

BT11003 250rxn
EUR 109
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

HotTaq Probe qPCR Universal Mix

BT11004 250rxn
EUR 123
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

AceQ U+ Probe Master Mix

Q113-02 500 rxn (20 μl/rxn)
EUR 267

AceQ U+ Probe Master Mix

Q113-03 2500 rxn (20 μl/rxn)
EUR 842

SYBR Green qPCR Master Mix

HY-K0501 5 mL (500 rxns)
EUR 263

RT Master Mix for qPCR

HY-K0510 1 mL (100 rxns)
EUR 291

HotTaq Probe qPCR Mix (no ROX)

BT11002 250rxn
EUR 109
Description: High quality HotTaq polymerase for different PCR variations and downstream applications.

Fast Probe Master Mix (200 rxn)

31005 2x1ML
EUR 234
Description: Minimum order quantity: 1 unit of 2x1ML

Fast Probe Master Mix (500 rxn)

31005-1 5x1ML
EUR 466
Description: Minimum order quantity: 1 unit of 5x1ML

Fast Probe Master Mix (5000 rxn)

31005-2 50x1ML
EUR 3871
Description: Minimum order quantity: 1 unit of 50x1ML

ChamQ Geno-SNP Probe Master Mix

Q811-02 500 rxn (20 μl/rxn)
EUR 277

ChamQ Geno-SNP Probe Master Mix

Q811-03 2500 rxn (20 μl/rxn)
EUR 923

2x SYBR Green qPCR Master Mix

B21202 5 mL
EUR 224
Description: Our 2x SYBR Green qPCR master mix performs toe to toe in all qPCR assays with the most well known brands on the market but surpases them significantly in cost-efficiency.

2x SYBR Green qPCR Master Mix

B21203 25 mL
EUR 856
Description: Our 2x SYBR Green qPCR master mix performs toe to toe in all qPCR assays with the most well known brands on the market but surpases them significantly in cost-efficiency.

AceQ Universal SYBR qPCR Master Mix

Q511-02 500 rxn (20 μl/rxn)
EUR 221

AceQ Universal SYBR qPCR Master Mix

Q511-03 2500 rxn (20 μl/rxn)
EUR 646

ChamQ Universal SYBR qPCR Master Mix

Q711-02 500 rxn (20 μl/rxn)
EUR 221

ChamQ Universal SYBR qPCR Master Mix

Q711-03 2500 rxn (20 μl/rxn)
EUR 646

Accuris qMax Probe No Rox qPCR Mix

PR2001-N-1000 1 PC
EUR 467.74

AceQ U+ Universal Probe Master Mix V2

Q513-02 500 rxn (20 μl/rxn)
EUR 267

AceQ U+ Universal Probe Master Mix V2

Q513-03 2500 rxn (20 μl/rxn)
EUR 842

SYBR Green qPCR Master Mix (High ROX)

HY-K0521 1 mL (100 rxns)
EUR 113

SYBR Green qPCR Master Mix (Low ROX)

HY-K0522 5 mL (500 rxns )
EUR 257

SYBR Green qPCR Master Mix (No ROX)

HY-K0523 5 mL (500 rxns )
EUR 257

miRNA Universal SYBR® qPCR Master Mix

MQ101-01 125 rxn(20 μl/rxn)
EUR 138

miRNA Universal SYBR® qPCR Master Mix

MQ101-02 500 rxn(20 μl/rxn)
EUR 242

 

 

t.spot covid
avitag biotin blocking cell proliferation reagent wst 1 ctgf elisa novex gel pcr machines Product tbr2 antibody western blot control

t.spot covid

HIGHLIGHTS

  • TSPOT.COVID is an ELISpot interferon gamma-release assay for SARS-CoV-2
  • TSPOT.COVID identifies a T cell response to SARS-CoV-2 spike S1 and N peptides
  • 2–8 weeks post SARS-CoV-2 diagnosis TSPOT.COVID detected 98% of infections
  • In comparison, immunoglobulin G (IgG) serology detected 83% of infections in the same period
  • Cellular immune response activated sooner and lasted longer than antibodies

Abstract

Objective

To evaluate the performance of the T-SPOT.COVID test for identifying SARS-CoV-2-responsive T-cells in participants with SARS-CoV-2 infection.

Methods

The T-SPOT.COVID test uses ELISpot interferon-gamma release assay (IGRA) methodology to measure T cell responses to SARS-CoV-2 spike S1 and nucleocapsid peptides. T-SPOT.COVID and anti-N immunoglobulin (Ig) G serology tests were performed on blood from 186 patients with nucleic acid amplification test (NAAT)-confirmed-SARS-CoV-2 infection and 100 control group participants.

Results

In the 2–8 weeks after NAAT-diagnosed SARS-CoV-2 infection, the T-SPOT.COVID test detected 98.4% (63 of 64) of infected participants, while anti-N IgG serology detected 82.8%. In the first 2 weeks after diagnosis, during adaptive immune response activation, there were less reactive T-SPOT.COVID responses (75.7%, 28 of 37 infected participants) and many less seropositive responses (32.4%). Response numbers tapered after 8 weeks; however, T-SPOT.COVID test continued to detect most participants with confirmed infection (83.6%, 56 of 67) and continued to out-perform serology (52.2%). T-SPOT.COVID response due to cross-reactive T cells was ruled out by demonstrating that, of 44 control group participants with T cells responsive to 4 human common cold coronavirus peptides, only 1 was T-SPOT.COVID reactive.

Conclusion

The T-SPOT.COVID test performed well in detecting SARS-CoV-2-sensitized T-cells over many months

Introduction

Long-term protection from infectious agents, such as the SARS-CoV-2 virus, is mediated by T cells and antibody-mediated immunity of the adaptive immune system (

Sette and Crotty, 2021

). The T-SPOT.COVID test was developed to identify the presence of SARS-CoV-2-responsive T cells.

T cells contribute to the understanding of SARS-CoV-2 infections in many ways. T cells can identify past SARS-CoV-2 infections at a time when PCR tests would be negative and antibodies levels may be waning (

Dan et al., 2021

;

Gudbjartsson et al., 2020

;

Poland et al., 2020

). T cells can provide immune memory lasting for months (

Dan et al., 2021

) and perhaps years, as suggested by the discovery of T cells to the SARS-CoV-1 coronavirus 17 years after infection (

Le Bert et al., 2020

). T cells may act independently of antibodies to control a SARS-CoV-2 infection, as shown by the recovery of COVID-19 patients who lack detectable antibodies but have SARS-CoV-2-responsive T cells (

Gallais et al., 2021

;

Sekine et al., 2020

). T cells also show reactivity to numerous SARS-CoV-2 epitopes, so have the potential to protect against many SARS-CoV-2 variants (

Grifoni et al., 2020

;

Tarke et al., 2021

). T cell-based assays can probe the longevity of an immune response following a SARS-CoV-2 infection or vaccination (

Goletti et al., 2021

;

Liu et al., 2021

;

Reynolds et al., 2021

). These various roles suggest that a T cell assay can be a key contributor to SARS-CoV-2 investigations.

The T-SPOT.COVID test, an enzyme-linked immunospot (ELISpot) assay, identifies T cells in peripheral blood that release interferon-gamma (IFN-γ) in response to stimulation with SARS-CoV-2 peptides. The T-SPOT.COVID test builds on the T-SPOT platform (Oxford Immunotec) used worldwide for tuberculosis and cytomegalovirus testing and the research version, the T-SPOT Discovery SARS-CoV-2 test (

Liu et al., 2021

;

t.spot covid
t.spot covid
Wyllie et al., 2021

). The T-SPOT.COVID ELISpot methodology is performed in many laboratories and offers a standardized comparison of T cell immunity among participants. In addition, ELISpot assays normalize the number of peripheral blood mononuclear cells (PBMCs), thus maintaining test effectiveness in participants with lymphopenia, a commonly reported condition in many COVID-19 patients (

Altmann and Boyton, 2020

) and immunosuppressed people.

The objective of this study was to evaluate the ability of the T-SPOT.COVID test to detect T cell responses in participants with or without a history of SARS-CoV-2 infection and to compare the T-SPOT.COVID test results with anti-N immunoglobulin (Ig)G serology results in the first several months after infection.

Materials and Methods

2.1 Participant recruitment

Participants for this single-center, cross-sectional study were recruited from patients who had attended the outpatient Primacare medical center in Fall River, Massachusetts, USA, between November 30, 2020, and March 24, 2021, a time of high demand for COVID-19 testing. Among other healthcare services, Primacare provided COVID-19 testing to anyone wanting or required to be tested. The New England Center for Clinical Research (NECCR) invited participants to join the study if they had received a positive SARS-CoV-2 nucleic acid amplification test (NAAT) at Primacare or if NECCR deemed them to be at low risk of SARS-CoV-2 infection. As this study was run independently from the participants’ healthcare providers, clinical data such as chest x-rays and hospitalizations records were not obtained. Informed consent and study approval were obtained from the Advarra institutional review board by NECCR at Primacare.
Confirmed-infection group: A NAAT, which detects the presence of the SARS-CoV-2 virus, was used to identify people infected with SARS-CoV-2 at the time of testing (

Rai et al., 2021

). Participants in the confirmed-infection group were recruited from asymptomatic and symptomatic patients who had had a positive SARS-CoV-2 NAAT result within the past 9 months. The date of the first positive NAAT result was considered the date of diagnosis of SARS-CoV-2 infection. Blood was drawn for Abbott SARS-CoV-2 chemiluminescent microparticle immunoassay (CMIA) anti-N IgG serology and T-SPOT.COVID tests between 0 to 249 days after diagnosis.

The analysis of responses was divided into 3 time periods: 0 to 2 weeks after diagnosis (0 to 14 days); 2+ to 8 weeks after diagnosis (15 to 56 days); and 8+ weeks after diagnosis (57+ days).
Control group: Many SARS-CoV-2 studies use frozen pre-pandemic blood for control samples; however, the T-SPOT platform requires fresh blood to ensure consistent results. Therefore fresh blood was obtained from control group participants prospectively recruited from individuals with low risk of prior SARS-CoV-2 infection. Requirements for enrollment included no current or prior signs or symptoms of COVID-19, no known contact with a confirmed SARS-CoV-2-infected individual, no prior history of a positive SARS-CoV-2 NAAT, no SARS-CoV-2 vaccination, and no prior diagnosis with SARS-CoV-1 or Middle Eastern Respiratory Syndrome (MERS). In addition, the BIOHIT HealthCare SARS-CoV-2 lateral flow anti-N IgM/IgG serology test was performed at enrollment, and the 1 person with a positive BIOHIT result was not enrolled. Blood was drawn at enrollment for testing with T-SPOT.COVID and the Abbott CMIA anti-N IgG serology test and anyone with a positive serology result was excluded from the control group.

2.2 T-SPOT.COVID test

The T-SPOT.COVID test includes over 250 SARS-CoV-2 peptides (15-mer peptides overlapping by 11 amino acids) in 2 antigen peptide pools; one pool contains peptides from the spike S1 protein, including the receptor-binding domain, and the other contains peptides from the nucleocapsid protein.
Blood samples for the T-SPOT.COVID test were processed and analyzed according to the manufacturer’s instructions. Briefly, blood samples were drawn into lithium heparin tubes which were shipped overnight to Oxford Immunotec (Abingdon, UK) in temperature-controlled shipping boxes. Next, the T-Cell Xtend reagent (Oxford Immunotec) was added to the samples, and PBMCs were isolated by density gradient centrifugation, washed, counted, and 250 000 cells/well were plated into 4 wells of a 96-well plate.

SARS-CoV-2 (COVID-19) Spike Antibody

3525-01mg 0.1 mg
EUR 436.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Envelope Antibody

3531-002mg 0.02 mg
EUR 171.82
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Envelope Antibody

3531-01mg 0.1 mg
EUR 436.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9099-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9099-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9103-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9103-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) NSP7 Antibody

9155-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.

SARS-CoV-2 (COVID-19) NSP7 Antibody

9155-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.

SARS-CoV-2 (COVID-19) Membrane Antibody

9157-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) Membrane Antibody

9157-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9159-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9159-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9161-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9161-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9163-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) NSP9 Antibody

9163-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3).

SARS-CoV-2 (COVID-19) Membrane Antibody

9165-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) Membrane Antibody

9165-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9167-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9167-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) Envelope Antibody

9169-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Envelope Antibody

9169-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9171-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9171-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9173-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP2 Antibody

9173-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3).

SARS-CoV-2 (COVID-19) NSP4 Antibody

9175-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4).

SARS-CoV-2 (COVID-19) NSP4 Antibody

9175-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4).

SARS-CoV-2 (COVID-19) NSP6 Antibody

9177-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4).

SARS-CoV-2 (COVID-19) NSP6 Antibody

9177-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP6 plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, it limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes (3,4).

SARS-CoV-2 (COVID-19) NSP10 Antibody

9179-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3).

SARS-CoV-2 (COVID-19) NSP10 Antibody

9179-01mg 0.1 mg
EUR 495.22
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP10 plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore it plays an essential role in viral mRNAs cap methylation (3).

SARS-CoV-2 (COVID-19) ORF6 Antibody

9189-002mg 0.02 mg
EUR 191.42
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. ORF6 disrupts cell nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of transport into the nucleus. Thereby it prevents STAT1 nuclear translocation in response to interferon signaling, thus blocking the expression of interferon stimulated genes (ISGs) that display multiple antiviral activities(3).