t.spot covid
HIGHLIGHTS
- •
TSPOT.COVID is an ELISpot interferon gamma-release assay for SARS-CoV-2
- •
TSPOT.COVID identifies a T cell response to SARS-CoV-2 spike S1 and N peptides
- •
2–8 weeks post SARS-CoV-2 diagnosis TSPOT.COVID detected 98% of infections
- •
In comparison, immunoglobulin G (IgG) serology detected 83% of infections in the same period
- •
Cellular immune response activated sooner and lasted longer than antibodies
Abstract
Objective
Methods
Results
Conclusion
Introduction
). The T-SPOT.COVID test was developed to identify the presence of SARS-CoV-2-responsive T cells.
;
;
). T cells can provide immune memory lasting for months (
) and perhaps years, as suggested by the discovery of T cells to the SARS-CoV-1 coronavirus 17 years after infection (
). T cells may act independently of antibodies to control a SARS-CoV-2 infection, as shown by the recovery of COVID-19 patients who lack detectable antibodies but have SARS-CoV-2-responsive T cells (
;
). T cells also show reactivity to numerous SARS-CoV-2 epitopes, so have the potential to protect against many SARS-CoV-2 variants (
;
). T cell-based assays can probe the longevity of an immune response following a SARS-CoV-2 infection or vaccination (
;
;
). These various roles suggest that a T cell assay can be a key contributor to SARS-CoV-2 investigations.
;

). The T-SPOT.COVID ELISpot methodology is performed in many laboratories and offers a standardized comparison of T cell immunity among participants. In addition, ELISpot assays normalize the number of peripheral blood mononuclear cells (PBMCs), thus maintaining test effectiveness in participants with lymphopenia, a commonly reported condition in many COVID-19 patients (
) and immunosuppressed people.
Materials and Methods
2.1 Participant recruitment
). Participants in the confirmed-infection group were recruited from asymptomatic and symptomatic patients who had had a positive SARS-CoV-2 NAAT result within the past 9 months. The date of the first positive NAAT result was considered the date of diagnosis of SARS-CoV-2 infection. Blood was drawn for Abbott SARS-CoV-2 chemiluminescent microparticle immunoassay (CMIA) anti-N IgG serology and T-SPOT.COVID tests between 0 to 249 days after diagnosis.
2.2 T-SPOT.COVID test
SARS-CoV-2 (COVID-19) Nucleocapsid Antibody |
|||
9103-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6). |
SARS-CoV-2 (COVID-19) Nucleocapsid Antibody |
|||
9103-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6). |
SARS-CoV-2 (COVID-19) NSP7 Antibody |
|||
9155-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers. |
SARS-CoV-2 (COVID-19) NSP7 Antibody |
|||
9155-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers. |
SARS-CoV-2 (COVID-19) NSP7 Peptide |
|||
9155P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP7 Peptide |
SARS-CoV-2 (COVID-19) Membrane Antibody |
|||
9157-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Antibody |
|||
9157-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Peptide |
|||
9157P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) Membrane Peptide |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
|||
9159-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
|||
9159-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP8 Peptide |
|||
9159P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP8 Peptide |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
|||
9161-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
|||
9161-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Peptide |
|||
9161P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP9 Peptide |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
|||
9163-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Antibody |
|||
9163-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP9 may participate in viral replication by acting as a ssRNA-binding protein (3). |
SARS-CoV-2 (COVID-19) NSP9 Peptide |
|||
9163P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP9 Peptide |
SARS-CoV-2 (COVID-19) Membrane Antibody |
|||
9165-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Antibody |
|||
9165-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4). |
SARS-CoV-2 (COVID-19) Membrane Peptide |
|||
9165P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) Membrane Peptide |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
|||
9167-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP8 Antibody |
|||
9167-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6). |
SARS-CoV-2 (COVID-19) NSP8 Peptide |
|||
9167P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP8 Peptide |
SARS-CoV-2 (COVID-19) Envelope Antibody |
|||
9169-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Envelope Antibody |
|||
9169-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. The envelope protein is a small polypeptide that contains at least one α-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic corona virus E proteins, and also viral replication (3). |
SARS-CoV-2 (COVID-19) Envelope Peptide |
|||
9169P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) Envelope Peptide |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
|||
9171-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
|||
9171-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Peptide |
|||
9171P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP2 Peptide |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
|||
9173-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Antibody |
|||
9173-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP2 may play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses (3). |
SARS-CoV-2 (COVID-19) NSP2 Peptide |
|||
9173P | ProSci | 0.05 mg | EUR 235.5 |
Description: SARS-CoV-2 (COVID-19) NSP2 Peptide |
SARS-CoV-2 (COVID-19) NSP4 Antibody |
|||
9175-002mg | ProSci | 0.02 mg | EUR 229.7 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4). |
SARS-CoV-2 (COVID-19) NSP4 Antibody |
|||
9175-01mg | ProSci | 0.1 mg | EUR 594.26 |
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP4 participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication (3)(4). |